3D models of Arthropleura sp. from the Montceau-les-Mines Lagerstätte
Femoral morphology and locomotor ecology of the oldest fossil squirrels
Skull of Indohyus indirae
3D GM dataset of bird skeletal variation
Skeletal embryonic development in the catshark
Bony connexions of the petrosal bone of extant hippos
bony labyrinth (11) , inner ear (10) , Eocene (8) , South America (8) , Paleobiogeography (7) , skull (7) , phylogeny (6)
Lionel Hautier (21) , Maëva Judith Orliac (19) , Laurent Marivaux (14) , Bastien Mennecart (12) , Pierre-Olivier Antoine (11) , Renaud Lebrun (10) , Rodolphe Tabuce (10)
MorphoMuseuM Volume 06, issue 02
<< prev. article next article >>
3D dataset3D models related to the publication: The ossicular chain of Cainotheriidae (Mammalia, Artiodactyla)
|
M3#508reconstruction of the middle ear with petrosal, bulla, stapes, incus, malleus Type: "3D_surfaces"doi: 10.18563/m3.sf.508 state:published |
Download 3D surface file |
Assemat, A., Mourlam M.J., Weppe R., Maugoust J., Antoine P.-O., Orliac M.J., 2020. The ossicular chain of Cainotheriidae (Mammalia, Artiodactyla). Journal of anatomy. https://onlinelibrary.wiley.com/doi/abs/10.1111/joa.13190
Blondel, C., 2005. New data on the Cainotheriidae (Mammalia, Artiodactyla) from the early Oligocene of south-western France. Zoological Journal of the Linnean Society 144(2), 145–166. https://doi.org/10.1111/j.1096-3642.2005.00166.x
Erfurt, J., Métais, G., 2007. Endemic European Paleogene Artiodactyls: Cebochoeridae, Choeropotamidae, Mixtotheriidae, Cainotheriidae, Anoplotheriidae, Xiphodontidae, and Amphimerycidae. In: Prothero DR, Foss SE (Eds.) The Evolution of Artiodactyls, pp. 59– 84. Baltimore, Maryland: The Johns Hopkins University Press.
Hemilä, S., Nummela, S., Reuter, T., 1995. What middle ear parameters tell about impedance matching and high-frequency hearing. Hearing research 85, 31–44. https://doi.org/10.1016/0378-5955(95)00031-X
Lebrun, R., 2018. MorphoDig, an open-source 3D freeware ded- MorphoDig, an open-source 3D freeware ded- icated to biology. 5th International Paleontological Congress, Paris.
Mason, M. J., 2016. Structure and function of the mammalian middle ear. II: Inferring function from structure. Journal of Anatomy 228, 300–312. https://doi.org/10.1111/joa.12316
Nummela, S., Thewissen, J. G. M., Bajpai, S., Hussain, S. T., Kumar, K., 2004. Eocene evolution of whale hearing. Nature 430(7001), 776–778. https://doi.org/10.1038/nature02720
Nummela, S., Thewissen, J. G. M., Bajpai, S., Hussain, S. T., Kumar, K., 2007. Sound transmission in archaic and modern whales: anatomical adaptations for underwater hearing. Anatomical Reccord 290(6), 716–733. https://doi.org/10.1002/ar.20528
Nummela, S., Thewissen, J. G. M., 2008. The Physics of Sound in Air and Water. In: Thewissen JGM, Nummela S (Eds.) Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates, pp. 175-182. University of California Press. https://doi.org/10.1525/california/9780520252783.001.0001
Theodor, J. M., 2010. Micro-Computed Tomographic Scanning of the Ear Region of Cainotherium: Character Analysis and Implications. Journal of Vertebrate Paleontology 30(1), 236–243. https://doi.org/10.1080/02724630903415979
Thewissen, J. G. M., Hussain, S. T., 1993. Origin of underwater hearing in whales. Nature 361(6411), 444–445. https://doi.org/10.1038/361444a0
Weppe, R., Blondel, C., Vianey-Liaud, M., Escarguel, G., Pélissié, T., Antoine, P.-O., Orliac, M. J., 2020. Cainotheriidae (Mammalia, Artiodactyla) from Dams (Quercy, SW France): phylogenetic relationships and evolution around the Eocene–Oligocene transition (MP19–MP21). Journal of Systematic Palaeontology 18(7),541-572. https://doi.org/10.1080/14772019.2019.1645754