Current issue


2024-12
Volume 10, issue 04
<< prev. next >>
ISSN: 2274-0422

Article Management

You must log in to submit or manage articles.

You do not have an account yet ? Sign up.

Most downloaded articles (last year)


Page 6 of 10, showing 20 record(s) out of 183 total

3D models related to the publication: Infrasonic and ultrasonic hearing evolved after the emergence of modern whales
Maëva J. Orliac Logo and Mickaël Mourlam Logo
Published online: 08/06/2017

Keywords: archaeocete; Artiodactyla; bony labyrinth; cochlea; Lutetian

https://doi.org/10.18563/m3.3.2.e4

  Abstract

    This contribution contains the 3D models of the bony labyrinths of two protocetid archaeocetes from the locality of Kpogamé, Togo, described and figured in the publication of Mourlam and Orliac (2017). https://doi.org/10.1016/j.cub.2017.04.061  

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 03, Issue 02 (2017)

PDF
3D models related to the publication: Postcranial morphology of the extinct rodent Neoepiblema (Rodentia: Chinchilloidea): insights into the paleobiology of neoepiblemids
Leonardo Kerber Logo, Adriana M. Candela Logo, José D. Ferreira Logo, Flávio A. Pretto Logo, Jamile Bubadué Logo and Francisco R. Negri Logo
Published online: 20/10/2021

Keywords: Chinchilloidea; functional morphology; Giant rodents; Neogene; Solimões Formation.

https://doi.org/10.18563/journal.m3.140

  Abstract

    This contribution contains the 3D models of postcranial bones (humerus, ulna, innominate, femur, tibia, astragalus, navicular, and metatarsal III) described and figured in the following publication: “Postcranial morphology of the extinct rodent Neoepiblema (Rodentia: Chinchilloidea): insights into the paleobiology of neoepiblemids”. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 07, issue 04 (2021)

PDF
3D model related to the publication: Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs
Christophe Hendrickx Logo, Phil Bell, Michael Pittman Logo, Andrew R. C. Milner, Elena Cuesta Logo, Jingmai . O’Connor Logo, Mark . Loewen Logo, Philip J. Currie Logo, Octávio . Mateus Logo, Thomas G. Kaye Logo and Rafael Delcourt Logo
Published online: 10/01/2022

Keywords: Allosauridae; basement scales; Integument; juvenile; non-avian Theropoda

https://doi.org/10.18563/journal.m3.162

  Abstract

    The present 3D Dataset contains the 3D model of the skin of Allosaurus described in Hendrickx, C. et al. in press. Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs. Biological Reviews. 

  Specimens

    Allosaurus jimmadseni UMNH VP C481 View specimen

    M3#902

    The material consists of a 3D reconstruction of the counterpart of a 30 cm2 patch of skin impression associated with the anterior dorsal ribs/pectoral region of the specimen of Allosaurus jimmadseni UMNH VP C481. The skin shows a semi-uniform basement of 1-2 mm diameter pebbles with a smaller number of slightly larger (up to 3 mm) ovoid scales. The irregular shape, distribution, and overall small size of these larger scales suggest that they are not classifiable as feature scales but rather as variations in the basement scales.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.902   state:published




    Download 3D surface file


 
  See original publication
  M3 article infos

Published in Volume 08, issue 01 (2022)

PDF
3D model related to the publication: Anatomy of the holotype of “Probelesodon kitchingi revisited, a chiniquodontid cynodont (Synapsida, Probainognathia) from the early Late Triassic of southern Brazil
Carolina Hoffmann Logo, Agustín Martinelli Logo and Marco Brandalise de Andrade Logo
Published online: 23/05/2023

Keywords: Computed Tomography; Cynodontia; Morphology; Triassic

https://doi.org/10.18563/journal.m3.194

  Abstract

    The present 3D Dataset contains the 3D model analyzed in the following publication: Carolina A. Hoffmann, A. G. Martinelli & M. B. Andrade. 2023. Anatomy of the holotype of “Probelesodon” kitchingi revisited, a chiniquodontid cynodont (Synapsida, Probainognathia) from the early Late Triassic of southern Brazil, Journal of Paleontology 

  Specimens
 
  M3 article infos

Published in Volume 09, issue 02 (2023)

PDF
3D model related to the publication: A new cynodont from the Upper Triassic Los Colorados Formation (Argentina, South America) reveals a novel paleobiogeographic context for mammalian ancestors
Leandro C. Gaetano Logo, Fernando Abdala, Federico D. Seoane, Aureliano Tartaglione, Michael Schulz, Alejandro Otero, Juan M. Leardi Logo, Cecilia Apaldetti Logo, Veronica Krapovickas Logo and Eugenio Steinbach
Published online: 25/04/2022

Keywords: Cynodontia; Late Triassic; Paleobiogeography; phylogeny; Probainognathia

https://doi.org/10.18563/journal.m3.165

  Abstract

    The present 3D Dataset contains the 3D model analyzed in Gaetano, L. C., Abdala, F., Seoane, F. D., Tartaglione, A., Schulz, M., Otero, A., Leardi, J. M., Apaldetti, C., Krapovickas, V., and Steinbach, E. 2021. A new cynodont from the Upper Triassic Los Colorados Formation (Argentina, South America) reveals a novel paleobiogeographic context for mammalian ancestors. Scientific Reports. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 08, issue 02 (2022)

PDF
3D models related to the publication: One skull to rule them all? Descriptive and comparative anatomy of the masticatory apparatus in five mice species based on traditional and digital dissections.
Samuel Ginot Logo, Julien Claude Logo and Lionel Hautier Logo
Published online: 04/09/2018

Keywords: Dissection; iodine-enhanced CT-scan; Masticatory musculature; Murinae; skull myology

https://doi.org/10.18563/journal.m3.65

  Abstract

    The present 3D Dataset contains the 3D models analyzed in the article entitled "One skull to rule them all? Descriptive and comparative anatomy of the masticatory apparatus in five mice species based on traditional and digital dissections" (Ginot et al. 2018, Journal of Morphology, https://doi.org/10.1002/jmor.20845). 

  Specimens

    Mus cervicolor R7314 View specimen

    M3#343

    .ply surfaces of the skull and masticatory muscles of Mus cervicolor. Created with MorphoDig, .pos and .ntw files also included. Scans were obtained thanks to the Institut des Sciences de l'Evolution de Montpellier MRI platform.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.343   state:published




    Download 3D surface file

    Mus caroli R7264 View specimen

    M3#344

    .ply surfaces of the skull and masticatory muscles of Mus caroli. Created with MorphoDig, .pos and .ntw files also included. Scans were obtained thanks to the Institut des Sciences de l'Evolution de Montpellier MRI platform.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.344   state:published




    Download 3D surface file

    Mus fragilicauda R7260 View specimen

    M3#345

    .ply surfaces of the skull and masticatory muscles of Mus fragilicauda. Created with MorphoDig, .pos and .ntw files also included. Scans were obtained thanks to the Institut des Sciences de l'Evolution de Montpellier MRI platform.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.345   state:published




    Download 3D surface file

    Mus pahari R7226 View specimen

    M3#346

    .ply surfaces of the skull and masticatory muscles of Mus pahari. Created with MorphoDig, .pos and .ntw files also included. Scans were obtained thanks to the Institut des Sciences de l'Evolution de Montpellier MRI platform.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.346   state:published




    Download 3D surface file

    Mus minutoides minutoides-1 View specimen

    M3#347

    .ply surfaces of the skull and masticatory muscles of Mus minutoides. Created with MorphoDig, .pos and .ntw files also included. Scans were obtained thanks to the Institut des Sciences de l'Evolution de Montpellier MRI platform.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.347   state:published




    Download 3D surface file


 
  M3 article infos

Published in Volume 04, issue 02 (2018)

PDF
3D model related to the publication: A stem therian mammal from the Early Cretaceous of Germany
Thomas Martin Logo, Alexander O. Averianov Logo, Julia A. Schultz Logo and Achim Schwermann Logo
Published online: 19/09/2023

Keywords: CT image stack; STL model; Theria; tooth; Tribosphenida

https://doi.org/10.18563/journal.m3.214

  Abstract

    This contribution contains the 3D model described and figured in the following publication: Martin, T., Averianov, A. O., Schultz, J. A., & Schwermann, A. H. (2023). A stem therian mammal from the Lower Cretaceous of Germany. Journal of Vertebrate Paleontology, e2224848. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 09, issue 03 (2023)

PDF
3D model related to the publication: From limb to fin: an Eocene protocetid forelimb from Senegal sheds new light on the early locomotor evolution of early cetaceans.
Quentin Vautrin Logo, Fabrice Lihoreau Logo, Bernard Sambou, Moustapha Thiam, Jeremy E. Martin Logo, Rodolphe Tabuce Logo, Sylvain Adnet Logo, Renaud Lebrun Logo, Anne-Lise Charruault Logo, Raphaël Sarr Logo and Lionel Hautier Logo
Published online: 26/08/2019

Keywords: Cetacea; Eocene; Forelimb; Protocetidae; Senegal

https://doi.org/10.18563/journal.m3.92

  Abstract

    The present 3D Dataset contains the 3D model analyzed in Vautrin et al. (2019), Palaeontology, From limb to fin: an Eocene protocetid forelimb from Senegal sheds new light on the early locomotor evolution of early cetaceans. 

  Specimens
 
  M3 article infos

Published in Volume 05, issue 03 (2019)

PDF
3D models related to the publication: An unpredicted ancient colonization of the West Indies by North American rodents: dental evidence of a geomorph from the early Oligocene of Puerto Rico
Laurent Marivaux Logo, Jorge Velez-Juarbe Logo and Pierre-Olivier Antoine Logo
Published online: 16/07/2021

Keywords: Caribbean islands; Geomorpha; Paleobiogeography; Paleogene; Rodentia

https://doi.org/10.18563/journal.m3.128

  Abstract

    This contribution provides the raw files for the μCT-scan data and renderings of the three-dimensional digital models of two fossil teeth of a geomyin geomorph rodent (Caribeomys merzeraudi), discovered from lower Oligocene deposits of Puerto Rico, San Sebastian Formation (locality LACM Loc. 8060). These fossils were described, figured and discussed in the following publication: Marivaux et al. (2021), An unpredicted ancient colonization of the West Indies by North American rodents: dental evidence of a geomorph from the early Oligocene of Puerto Rico. Papers in Palaeontology. https://doi.org/10.1002/spp2.1388 

  Specimens

    Caribeomys merzeraudi LACM 162478 View specimen

    M3#712

    Right lower dp4: isolated deciduous premolar. The specimen was scanned with a resolution of 5 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. This isolated tooth was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.712   state:published




    Download 3D surface file

    M3#714

    5µm µCT data set . Right lower dp4: isolated deciduous premolar. The specimen was scanned with a resolution of 5 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France).

    Type: "3D_CT"

    doi: 10.18563/m3.sf.714   state:published




    Download CT data

    Caribeomys merzeraudi LACM 162449 View specimen

    M3#713

    Right lower molar (m1 or m2). The specimen was scanned with a resolution of 4.5 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. This isolated tooth was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.713   state:published




    Download 3D surface file

    M3#715

    µCT data at 4.5µm

    Type: "3D_CT"

    doi: 10.18563/m3.sf.715   state:published




    Download CT data


 
  See original publication
  M3 article infos

Published in Volume 07, issue 03 (2021)

PDF
A surface scan of the "Tübingen Steinkern", Holotype of Proganochelys quenstedtii (Testudinata), with some historical remarks.
Ingmar Werneburg Logo, Christina Kyriakouli Logo and Tomasz Szczygielski Logo
Published online: 08/08/2022

Keywords: Friedrich August Quenstedt; history of science; Holotype; steinkern; surface scan

https://doi.org/10.18563/journal.m3.168

  Abstract

    Turtles are one of the most impressive vertebrates. Much of the body is either hidden in a shell or can be drawn into it. Turtles impress with their individual longevity and their often peaceful disposition. Also, with their resilience, they have survived all extinction events since their emergence in the Late Triassic. Today's diversity of shapes is impressive and ranges from the large and high domed Galapagos turtles to the hamster-sized flat pancake turtles. The holotype of one of the oldest fossil turtles, Proganochelys quenstedtii, is housed in the paleontological collection in Tübingen/Germany. Since its discovery some years before 1873, P. quenstedtii has represented the 'prototype' of the turtle and has had an eventful scientific history. It was found in Neuenhaus (Häfner-Neuhausen in Schönbuch forest), Baden-Württemberg, Germany, and stems from Löwenstein-Formation (Weißer Keupersandstein), Late Triassic. The current catalogue number is GPIT-PV-30000. The specimen is listed in the historical inventory “Tübinger Petrefaktenverzeichnis 1841 bis 1896, [folio 326v.]“, as “[catalogue number: PV]16549, Schildkröte Weiser Keupersandstein Hafnerhausen” [turtle from White Keuper Sandstone]. Another, more recent synonym is “GPIT/RE/9396”. The same specimen was presented as uncatalogued by Gaffney (1990). Here we provide a surface scan of the steinkern for easier access of this famous specimen to the scientific community.
      

  Specimens
 
  M3 article infos

Published in Volume 08, issue 03 (2022)

PDF
3D models related to the publication: Micromeryx? eiselei - a new moschid species from Steinheim am Albuch, Germany, and the first comprehensive description of moschid cranial material from the Miocene of Central Europe
Manuela Aiglstorfer Logo, Loïc Costeur Logo, Bastien Mennecart Logo and Elmar P. Heizmann
Published online: 16/10/2017

Keywords: inner ear; Miocene; Moschidae; petrosal; skull

https://doi.org/10.18563/m3.3.4.e4

  Abstract

    The present 3D Dataset contains the 3D models of the holotype (NMB Sth. 833) of the new species Micromeryx? eiselei analysed in the article Aiglstorfer, M., Costeur, L., Mennecart, B., Heizmann, E.P.J.. 2017. Micromeryx? eiselei - a new moschid species from Steinheim am Albuch, Germany, and the first comprehensive description of moschid cranial material from the Miocene of Central Europe. PlosOne https://doi.org/10.1371/journal.pone.0185679 

  Specimens
 
  M3 article infos

Published in Volume 03, Issue 04 (2017)

PDF
3D models related to the publication: Deciphering the morphological variation and its ontogenetic dynamics in the Late Devonian conodont Icriodus alternatus
Catherine Girard, Anne-Lise Charruault Logo, Thomas Gluck, Carlo Corradini Logo and Sabrina Renaud Logo
Published online: 08/02/2022

Keywords: Conodonts; geometric morphometrics; Late Devonian; ontogenetic trajectory

https://doi.org/10.18563/journal.m3.161

  Abstract

    This contribution contains the 3D models of a set of Famennian conodont elements belonging to the species Icriodus alternatus analyzed in the following publication: Girard et al. 2022: Deciphering the morphological variation and its ontogenetic dynamics in the Late Devonian conodont Icriodus alternatus

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 08, issue 01 (2022)

PDF
3D models related to the publication: New remains of Neotropical bunodont litopterns and the systematics of Megadolodinae (Mammalia: Litopterna)
Juan D. Carrillo Logo, Catalina Suarez Logo, Aldo Benites-Palomino Logo, Andrés Vanegas, Andrés Link Logo, Aldo F. Rincón Burbano Logo, Javier Luque Logo, Siobhán B. Cooke Logo, Melissa Tallman Logo and Guillaume Billet Logo
Published online: 31/08/2023

Keywords: fossils; La Venta; Litopterna; Miocene; South America

https://doi.org/10.18563/journal.m3.174

  Abstract

    This contribution contains the 3D models described and figured in: New remains of Neotropical bunodont litopterns and the systematics of Megadolodinae (Mammalia: Litopterna). Geodiversitas. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 09, issue 03 (2023)

PDF
3D model related to the publication: The endocranial anatomy of the stem turtle Naomichelys speciosa from the Early Cretaceous of North America
Ariana Paulina-Carabajal Logo, Juliana Sterli Logo and Ingmar Werneburg Logo
Published online: 10/09/2019

Keywords: brain endocast; inner ear; micro computed tomography; Morphology; Testudinata

https://doi.org/10.18563/journal.m3.99

  Abstract

    The present 3D Dataset contains the 3D model analyzed in the following publication: Paulina-Carabajal, A., Sterli, J., Werneburg, I., 2019. The endocranial anatomy of the stem turtle Naomichelys speciosa from the Early Cretaceous of North America. Acta Palaeontologica Polonica, https://doi.org/10.4202/app.00606.2019 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 05, issue 04 (2019)

PDF
3D models related to the publication: Brief comment on the brain and inner ear of Giganotosaurus carolinii (Dinosauria: Theropoda) based on CT scans.
Mauro N. Nieto Logo and Ariana Paulina-Carabajal Logo
Published online: 01/04/2020

Keywords: Carcharodontosauridae; Cranial endocast; CT scans; Endosseous Labyrinth; Paleoneurology

https://doi.org/10.18563/journal.m3.108

  Abstract

    This contribution contains the 3D models described and figured in the following publication: Paulina-Carabajal, A. and Nieto, M. N. In press. Brief comment on the brain and inner ear of Giganotosaurus carolinii (Dinosauria: Theropoda) based on CT scans. Ameghiniana. https://doi.org/10.5710/AMGH.25.10.2019.3237
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 06, issue 02 (2020)

PDF
3D models related to the publication: A new traversodontid cynodont with a peculiar postcanine dentition from the Middle/Late Triassic of Namibia and dental evolution in basal gomphodonts.
Christophe Hendrickx Logo, Leandro C. Gaetano Logo, Jonah N. Choiniere Logo, Helke Mocke Logo and Fernando Abdala
Published online: 22/09/2020

Keywords: Cynodontia; Gomphodontia; postcanine; teeth; Traversodontidae

https://doi.org/10.18563/journal.m3.123

  Abstract

    The present 3D Dataset contains the 3D models analyzed in Hendrickx, C., Gaetano, L. C., Choiniere, J., Mocke, H. and Abdala, F. in press. A new traversodontid cynodont with a peculiar postcanine dentition from the Middle/Late Triassic of Namibia and dental evolution in basal gomphodonts. Journal of Systematic Palaeontology

  Specimens
 
  M3 article infos

Published in Volume 06, issue 05 (2020)

PDF
3D models related to the publication: Prenatal growth stages show the development of the ruminant bony labyrinth and petrosal bone.
Loïc Costeur Logo and Bastien Mennecart Logo
Published online: 19/10/2016

Keywords: bony labyrinth; foetus; ossification timing; phylogeny; Ruminantia

https://doi.org/10.18563/m3.2.2.e3

  Abstract

    The present 3D Dataset contains the 3D models analyzed in Costeur L., Mennecart B., Müller B., Schulz G., 2016. Prenatal growth stages show the development of the ruminant bony labyrinth and petrosal bone. Journal of Anatomy. https://doi.org/10.1111/joa.12549 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 02, Issue 02 (2017)

PDF
3D models related to the publication: Cranial anatomy of Hypisodus minimus (Artiodactyla: Ruminantia) from the Oligocene Brule Formation of North America
Hannah Keppeler, Julia A. Schultz Logo, Irina Ruf Logo and Thomas Martin Logo
Published online: 09/03/2023

Keywords: 3D reconstruction; CT data set; Hypertragulidae; skull

https://doi.org/10.18563/journal.m3.176

  Abstract

    The present 3D Dataset contains the 3D models analyzed in Keppeler, H., Schultz, J. A., Ruf, I., & Martin, T., 2023. Cranial anatomy of Hypisodus minimus (Artiodactyla: Ruminantia) from the Oligocene Brule Formation of North America. Palaeontographica Abteilung A. 

  Specimens

    Hypisodus minimus SMNK-PAL 27212 View specimen

    M3#1031

    CT image stack of a skull of Hypisodus minimus. Also includes a lumbar vertebra and a probable proximal phalanx of digit III or IV.

    Type: "3D_CT"

    doi: 10.18563/m3.sf.1031   state:published




    Download CT data

    M3#1036

    3D surface models of a skull of Hypisodus minimus (SMNK-PAL27212). The data includes a surface model for: basisphenoid, tympanic bullae, ethmoid (lamina perpendicularis), frontals, jugal (left), jugal (right), lacrimals, lower dentition, mandibles, mastoid processes, maxillaries, maxilloturbinals, nasals, occipital, palatine, parietals, petrosals, presphenoid, squamosals, turbinates, upper dentition, and the vomer.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.1036   state:published




    Download 3D surface file

    Hypisodus minimus SMNK-PAL 27213 View specimen

    M3#1033

    CT image stack of a skull of Hypisodus minimus. Also shows numerous postcranial material including an atlas articulated with the occipital bone, the distal part of a left humerus articulated to radius and ulna, a part of a femur, a part of a tibia and fibula, unidentifiable tarsal bones, parts of the metatarsals II, III, IV and V and their phalanges, a proximal phalanx of digit III or IV, a middle phalanx of digit III or IV, a possible patella and calcaneus, as well as numerous unidentifiable broken bony fragments.

    Type: "3D_CT"

    doi: 10.18563/m3.sf.1033   state:published




    Download CT data

    M3#1035

    3D surface models of a skull of Hypisodus minimus (SMNK-PAL27213). The data includes a surface model for: atlas, basisphenoid, tympanic bullae, nasals, occipital, the petrosals, and the inner ear.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.1035   state:published




    Download 3D surface file


 
  See original publication
  M3 article infos

Published in Volume 09, issue 01 (2023)

PDF
3D models related to the publication: New remains of Nalamaeryx (Tragulidae, Mammalia) from the Ladakh Himalaya and their phylogenetical and palaeoenvironmental implications
Wasim A. Wazir Logo, Bastien Mennecart Logo, Ramesh K. Sehgal, Navin Kumar, Piyush Uniyal Logo, Rajeev Patnaik Logo and Rohit Kumar
Published online: 03/01/2022

Keywords: Ladakh Himalaya; Mandibles; Nalameryx; Oligocene; ruminant

https://doi.org/10.18563/journal.m3.142

  Abstract

    The present 3D Dataset contains the 3D models analyzed in Mennecart B., Wazir W.A., Sehgal R.K., Patnaik R., Singh N.P., Kumar N, and Nanda A.C. 2021. New remains of Nalamaeryx (Tragulidae, Mammalia) from the Ladakh Himalaya and their phylogenetical and palaeoenvironmental implications. Historical Biology. https://doi.org/10.1080/08912963.2021.2014479
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 08, issue 01 (2022)

PDF
3D models related to the publication: The neuroanatomy of Zulmasuchus querejazus (Crocodylomorpha, Sebecidae) and its implications for the paleoecology of sebecosuchians
Yohan Pochat-Cottilloux Logo, Jeremy E. Martin Logo, Stéphane Jouve Logo, Gwendal Perrichon Logo, Jérôme Adrien Logo, Céline Salaviale, Christian de Muizon Logo, Ricardo Cespedes and Romain Amiot Logo
Published online: 26/11/2021

Keywords: Bolivia; Crocodylomorpha; paleoneuroanatomy; Sebecidae; Zulmasuchus

https://doi.org/10.18563/journal.m3.148

  Abstract

    The present 3D Dataset contains the 3D models analyzed in Pochat-Cottilloux Y., Martin J.E., Jouve S., Perrichon G., Adrien J., Salaviale C., de Muizon C., Cespedes R. & Amiot R. (2021). The neuroanatomy of Zulmasuchus querejazus (Crocodylomorpha, Sebecidae) and its implications for the paleoecology of sebecosuchians. The Anatomical Record, https://doi.org/10.1002/ar.24826 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 07, issue 04 (2021)

PDF

Page 6 of 10, showing 20 record(s) out of 183 total